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chains 

L Samaj and P Markoi 
Institute of Physics, Slovak Academy of Science, DlbravskA cesta 9,842 28 Bratiskva, 
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Abstract. The Ising cbaim in a random extemal field or with random interactions 
are studied. The equivalence of these models is shown, and the functional equ* 
tion for the quenched free energy is derived. For the system in a random e x t m a l  
field we prove rigomusly the non-analytical behaviour of the free energy in the Limit 
of large comtant interactions: f (J)  m exp(-ZJa*), with positive Derrida-Hilhorst 

dimensional system is given. The system with random interactions, the fraction of 
which is infinitely large. is solved exactly. For large, but finite interactions, we prove 
again that the singular behaviour of j can he found, depending on the magnitude of 
the extemal magnetic field and on the probability distribution of interactions. 

roata a* < 1 detmincd  hy !erp!-2Ua')) = It The -cner.&rn!;en to Q,l?&mC 

1. Introduction 

Low-dimensional systems, in spite of their restricted applicability, correctly describe a 
number of phenomena associated with higher dimensions. Their equilibrium statistics 
can usually be determined exactly and so they may be used as a test for general 
hypotheses or make some new suggestions. However, once the model becomes random, 
the space variation of its parameters prevents expression of the free energy in a closed 
form, except in some speciai exampies. 

In the theory of the random-field king chain with constant (dimensionless) in- 
teractions J (model I; for a recent review see [1]) and the Ising chain with random 
interactions in a uniform (dimensionless) field H' (model 11), the closed-form solutions 
have been obtained at  zero temperature [2-41; building the model's random param- 
eters from the known solution, at a specific temperature [5]; considering particular 
non-trivial distribiutions of random fieids [6, i j  or taking the fieids on the fraction of 
sites infinitely strong [B, 91, at  arbitrary temperatures. 

When the exact results are not available, one combines analytical and numerical 
methods [lo] or develops series expansions of chosen quantities in powers of some small 
parameter. For model I, Derrida and Hilhorst [9] elaborated a l a r g d  expansion of 
the quenched free energy in powers of a = exp(-2J). They first derived the integral 
equation for the unique probabiiiiy distribution P of auxiiiary recursion variabies i4j 
and then averaged the free energy f,. In the limit of infinite interactions a -t 0 they 
showed that fa is analytical in the lowest order of a only if the (site-independent) 
mean value of field variables z ,  = exp(-2H,) fulfils the condition 

(2) < 1.  

03054470/91/061319+15$ll3.50 @ 1991 IOP Publirhing Ltd 1319 
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If the mean value of I is higher than one, they obtained the singular behaviour fa % 

U'". with the exponent (I* being given by the positive root of (z"') = 1.  The piocedure 
of deriving Derrida-Hilhorst roots has not been justified rigorously, hat the conclusion 
turns out to be valid for a wide class of distributions of z [7,9]. For model 11, the 
non-analyticity has been observed for the ground state magnetization in the limit of 
a vanishing external field [ll,  121. 

The framework in which we set the main results of this paper is presented in 
sections 2 and 3. In section 2, we map models I and I1 one into another. On the basis of 
this 'symmetry' we obtain the one integral equation for function f,(b) (a = exp(-2J), 
tanh(H*) for models I and 11, respectively), which for the value of the formal parameter 
b = U determines the free energy fa of systems (section 3). We use this equation, 
which slightly differs from that derived in [6,7], as a starting point for the study of 
both models. 

The existence of the equation for the free energy rather than for the probability 
distribution P is of special importance. We believe that it enables us to study both 
models in a much simpler way, especially in asymptotic regimes with 'almost infinite 
interactions'. The probability distribution P can be solved exacly in the limit ofinfinite 
constant or (judiciously chosen) random interactions for models I and 11, respectively. 
Its form, however, considerably changes when interactions slightly differ from infinity. 
On the other band, f,, should change only slightly in this process and so the proposed 
formulation could be more suitable. 

As an example of our treatment, we re-analyse model I in section 3. We explain 
the origin of Derrida-Hilhorst roots and reproduce the singular behaviour of fa in a 
rigorous and simpler way compared with [9]. 

Section 4 brings an application of the formalism to the quasi-onedimensional case. 
The integral equation for fa can be also written but in space of L = 2M - 1 formal 
parameters b,,  ..., b, for a strip of width M .  We show that in such systems the 
condition of the analyticity of fa coincides with (1). If condition (1) does not valid, 
the breakdown of the Taylor expansion indicates the non-analyticity of fa in the 2Mth 
order of U. 

Section 5 deals with a counterpart of the above mentioned random-field Ising 
chain in models I1 with a special choice of random bonds J;:  tanh J: = =!=K and 0 
with corresponding probabilities. In the limit of infinite random interactions (IC = 
1) we solve this model exactly. When Ii = 1 - E ( E  + 0), we prove that under 
certain conditions fa becomes non-analytical in the first, second, . . ., nth order of the 
expansion in E .  

L h a a j  and P Markoi 

2. Dual properties of inhomogeneous king chains with broken symmetry 

The ordinary duality transformation (for a review, see [13]) connects dual models 
possessing a global or local Z(q) symmetry in dimensions higher than one. In this 
section we construct a duality transformation for the one-dimensional Ising model 
which Z(2) symmetry is broken by an applied field. This duality generates a path 
between the king chain with diagonal inhomogeneity and that with non-diagonal 
inhomogeneity. 

Let us first consider the Ising chain with constant nearest-neighbour interactions 
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of strength J in a varying field {Hn}r=l. Its  Hamiltonian is written as 

where s, = A1 denotes the king spin variable at site n. The thermodynamic limit of 
the free energy per site, f ( J , { I f , } ) ,  is given by 

Here 

is the nartii n function with the summation going over all p o x  ~ ~ ~ spin configurations. 
We note that J ,  {If,,}, 71, f ( J ,  {If"}) include the inverse temperature and so they are 
dimensionless. 

The above theory does not possess a global Z(2) symmetry because its Hamiltonian 
(2) is not invariant under a change in the sign of all spins s,. This deficiency seems to 
prevent the construction of the duality transformation. However, the duality connects 
the partition functions of the dual models, so if we find a Z(2) symmetric theory 
which partition function is identical, or proportional, to Z(N)(J,{H,,}), we can use 
this theory in performing the duality transformation for the original model (2). With 
this aim, we take advantage of the invariance of ZcN) (J ,  {H , ) )  under the field-reversal 
transformation If,, - -H,, for all n and rewrite (36) as 

is the Hamiltonian of the Z(2) symmetric theory we are looking for. The introduced 
'ghost' spin sz = f l  is placed on a new site z which does not lie on the considered 
chain. 

The ghost spin concept allows us to transform the original problem of the Ising 
chain in an external field to the problem of interacting king spins on a two-dimensional 
structure 0 (figure 1) in zero field. We now can map this Z(2) invariant model into 
its dual one. The mapping consists of a geometrical and an algebraic part: the dual 
lattice D is constructed from the original one 0 by placing a vertex in the centre of 
each elementary triangle of 0 and then connecting each vertex of D with its nearest 
neighbours m well as the dual point I situated outside the structure 0 (see figure 1); 
the Hamiltonian of the dual Ising model on D is given by 



1322 

where U, (U=)  = f l  is a disorder variable associated with site n (z) of D. Let the 
crossing 'interactions' of the dual models be connected by the local duality relations 

L Samoj and  P Markod 

exp(-2J) = tanh(H*) 
exp(-2Hn) = tanh(J;). 

Then the h a !  partit,ion functions are proportional t,o each other: 

N 
Z ( N ) ( J ,  { H , } )  = ( ~ i n h ( 2 J ) ) ~ I '  n ( ~ i n h ( 2 H J ) ' ~ ~  

"=l 

The inverse realization of the ghost spin method transforms the summation over spin 
configurations on the right-hand side of (7) to the statistical sum, ZcN)({J: ) ,H*) ,  of 
the Ising model inhomogeneous in two-spin interactions { J ; )  in the uniform field H' 
with the Hamiltonian 

N - 1  N 

- ( U )  = - J~U,,U,+, - H' 
n=l "=l 

Th.. C....l d..-l:&.. C -_-.. 1 -  
L,LC X l l l O L  ""arly ,",U,",O 

N 

Z c N ) ( J , { H n } )  = ( ~ i n h ( 2 J ) ) ~ I '  ~ ( S ~ ~ ~ ( ~ H , , ) ) ' ~ ~ Z ( ~ ) ( { J ~ } , H ' )  (9) 
"=l 

tcgethe: - i th  @e)  s-d ( e h ) ,  p : c & ~ ~ ~  8, psth betwe:: the t-e iEhm-ogeaeou:: !sing 
chains. I t  suitably enriches the concept of duality between the random-field Ising chain 
and the random-bond king models (in eero field) on a two-layer strip as presented 
in [14]. 

\ / 

\ I. /. / /  
\;\ ,;/ 

\ 

9, D 

Figure 1. Dual inhomogeneous Ising chine in the gh-1 spin method: msaing 
interactions and fields are eonneded according to the duality relations (6n) and 
(66). 
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All that has been said in this section can be generalized to all higher-dimensional 
Ising and gauge models which Z(q) ( q  = 2,3,. . .) symmetry is broken by an applied 
field. 

In order to make use of the duality formula (Q), we shall express the free energy 
per spin of the Ising chain in a varying field (equations (3a) and (36)) in terms of 
non-linear recursive relations. In the spirit of the ordinary transfer-matrix technique 
we start from defining the quantity Z,!.) (n = 1,2, .  . , , N ;  i = 0 , l )  which corresponds 
to ihe partition iunction o i  the chain iragment siariing at  site i, ending at  site n, 
with the fixed up (down) edge spin for i = O(1). It is easy to show that Z,!.) obey the 
recursive relations 

z?' = exp(H,)[exp(J)z?-" + e x p ( - ~ ) ~ P - ' ) ]  

Zy' = exp(--H,)[exp(-J)Z~-') + exp(J)Z!"-')l. 

( loa)  

(lob) 

We propose new auxiliary variables I, = Zy' /Zp) .  They satisfy the recursive relation 

Here, we have neglected all terms vanishing in the limit N -+ 00. 

The duality relations (Sa), (6b) and (9) now allow us to express the free energies 
per site f ( J , { H , ] )  and f ( { J ; } , H * )  through the only type of recurrence. Namely, let 
us define 

N 1 -  

f i " ' ( { L , ] )  = $ lOg(1 + QZ,) 
"=l 

with I, given by 

and a = exp(-2J) (tanhH'), L, = exp(-2Hn) (tanhJ;) for the Ising chain inhome 
geneous in a field (twospin interactions). Then, one finds 
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N-1 

- f ( { J : } , H * )  = log2+log(cosh(H*)) + I ’  log(cosh(J;)) 
“=I  

Nf-” 

(146) (NI  + f,,,,,.({tanh J3) ’ 

Note that the values of parameters Q, { z ” ]  are restricted to the interval ’D = (0, m) 
for the Ising chain that is inhomogeneous in a field, and ’D = (-1,l)  for the king 
chain that is inhomogeneous in interactions. 

. 

3. Random Ising chains 

Let varyine - H- I. in (14a) or JA in (146) be independent random variables. The problem 
of the quenched averaging of the corresponding free energies per site reduces to the 
problem of the quenched averaging of f:” (equations (13a) and (136)) for a given 
probability distribution p(z)  of z,,. The usual approach, initiated in [4] and developed 
by Derrida and cc-workers (see e.g. [9, l l]) ,  is based on the assumption that with 
increasing n a stationary probability distribution P ( z )  of 2, E ’D, independent on n 
exists. Then 

fa = lim f L N )  = dz P ( z )  log( 1 + Q Z )  
N-CU 

where P ( z )  is the solution of an integral equation deduced from recursion (136). Here, 
we propose an approach which avoids the computation of P ( z )  and directly leads to a 
functional equation for f,, itself. The method removes serious problems in determining 
P ( z )  when the last reflects the non-trivial behaviour off,,. 

The method is based on the identity 

f A N )  = /  . . . /  dzl...dzNp(z1)~~~p(zN)lop(l+~zN) (16a) 
v u  

where zN (being the function of zl,. , . , z N )  is related to z N -  
z ~ , . . . J N - ~ )  by 

(being the function of 

Let us extend the definition off:” (equation (16a)) as follows: 

f i N ’ ( b )  = / .. , / dz, . . .dzN p ( 2 , )  ’ .  ‘ p ( z N )  lOg(1  + b Z N ) .  (17) 
v u  

It is clear that f L N )  = f:”(a). Substituting z N  (166) into (17) and after some simple 
algebra we obtain 
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Here, (...) denotes the averaging over p(z).  Since in the limit N -+ CO f:”(b) = 
f:”-”(b) = f,,(b), we finally arrive at the functional equation 

which determines the required fa = fa(.). A similar equation has been derived for 
the random-field Ising chain in [6] on the basis of preliminary considerations in [15]. 
The function D(u), defined in [6,7], is similar to our f , (b) but, in contrast to our 
formulation, the free energy is obtained by averaging D(u) (with a field-dependent 
value of U) over the distribution of random fields. Therefore, we consider our formalism 
to be more suitable for the following studies in the neighbourhood of the point a = 0. 

Redefining x,  -+ bx, (n = N - 1, N) in (16b), (17) one easily shows that f , (b )  is 
the function of ab  and a / b  only. Consequently, it holds that 

fa@) = f-,(-b). 

Definition (17) also implies that 

f.(O) = 0. 

The supposed inequality (log z )  < 
~~ 

rds to f,,(b) = 0. 
Let us suppose-that.(z’)-<‘l for all n = 1 , 2 , .  . . . With respect t o  (ZO), the Taylor 

expansion of f,(b) near a, b = (0,O) can be written as 

with n + m = an even number. Substituting (22) into the functional equation (19) 
and comparing terms with the same powers in a and b we find in a systematic way 
the relations for cnm. The coefficients cnm with n < m turn out to be equal zero. 
Equations for the first non-zero coefficients read 

etc. The resulting expansion of fa = fo(a) 

coincides with that obtained in [9] for the random-field Ising chain. 
The ‘naive’ expansion breaks down in the 2nth order if (2”) 2 1. This is not the 

case of the king chain with random interactions (1.1 < 1) for which the expansion 
around H’ = 0 works in all orders of a’. On the other hand, for the random-field 
chain with z E (0, CO) the expansion around J -+ m can be highly non-trivial. 
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We can expand function f,(b), with a, b small and positive, also around b = a in 
powers of ( b  - a): 

m m  

As a is small, we suppose that (25 )  converges for Ib - a1 < a. Then, coefficients 
associated with nth power of b in ( 2 2 )  and (25) should coincide. In this way we find 
d, ,  = (r)/(l- (z)),  and so it diverges for (2 )  - 1- in the same way as cI1. 

These divergencies indicate the non-analyticity of f,(b) near b = 0 and on the line 
a = b: 

Setting in ( 2 6 6 )  b -+ 0 one obtains 0 = fa(a) - ~11a2p' ,  which yields, comparing with 
( 2 6 0 ) ,  E l ,  = d,,, a* = p". 

Substituting (2611) and ( 2 6 b )  into the functional equation (19) we get for the 
leading term the relation 

- 

(2" ) = 1 .  (27) 

fa(.) aZ*. ( 2 8 )  

Thus, we have proven the non-analyticity of the free energy near a - 0: 

with a* given by relation (27). The same finding, together with an approximate form 
of the prefactor, has been found in [9] in a more complicated way and with the aid of 
different plausible (hut not rigorously justified) arguments. 

4. Naive expansion for quasi-one-dimensional systems 

T",- --- _._.._a:__ : .__-:_I :._. LA.. &I^ ..-:... ^ :-.. L -  AL. .L.:_ 
I.= L.011 gr;nclorl'.c U", yrc:vruus CUIIUI"=LabIUIID ,lull, u1c: L I n l Y C  CAyarrJlulr Y U  u11; a u , p  
of width M. The varying field H,,  (n = 1 , .  . . , N ;  m = 1, .  . . , M) of the Ising model 
studied here will be included in znm = exp(-ZH,,,) and constant nearest-neighbour 
bonds J in a = exp(-2J). I t  is evident that the statistical sum Z(N) consists of 2M 
terms ZjN), i = 0,1 , .  . ., L = 2M - 1. Each term corresponds to a given configuration 
of M spins in the Nth  column. Let ZiN) (ZiN)) correspond to the configuration 'all 
spins up (down)'. The recursive relation for 2jNl = Z/NJ/ZaN' (i # 0) can easily be 
found: 

.... . . . . . . . . 

where in ai = aiN) = nz=(;' zNm the product is over all sites on which spin is down. 
mi is number of interaction lines which connect different spins in the ith configuration; 
for 0 < i < L it is positive, while 

aL=O.  (30) 
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In equation (29) Pi is the number of spins 'down' and 7.. number of bonds between sites 
( N ,  k ) ,  (N - 1, k), k = 1,. . . , M which connect sites with different spins in respective 
ith and j t h  configurations. One easily finds that 

$3. 

IPi - Pj I I 7ij I Pi + Pj Yii = 0 .  (31) 

Owing to (31), the numerator in (29) is proportional to api and 80 ,2?) = aaitpiz!"', $' - 1 (n = N - 1: N I .  Thus we can write the recursive formula for " I N )  as 

with 
A . .  = yij + a1 + P j  -Pi z 0 
'li = ai + 2Pi t 2 .  

*J 

It  is important to note that once i or j is smaller than L ,  Aij > 0, while, owing to  (30) 
and (31), 

A L L = o .  (34) 

By analogy with section 2 one can show that the quenched averaging of the 
free energy per site is equivalent to the problem of quenched averaging of fa = 

( N W  
IimN-w f a  

for a given distribution p(z )  of independent z,,,, (the auxiliary variables $'I fulfil 
recursion (32) where N is changed by n). In the spirit of our strategy, we define 

x log 1 + bia"-'zlN)) . ( i#O 

Thus, fa = 1imN-- fiNM)(a,. . . ,a) .  Using recursive relation (32) we obtain in the 
limit N + 00 the functional equation 

fa(&, ,... , b L )  = + ( fa&,.  . . , a L )  -fa(., . . . ,a)) 



1328 L gamaj and P Mark03 

which determines the required fa = fa(., . . . ,a ) .  

a -  O , b - O ,  
Let us suppose that the naive expansion of f , (b, ,  . . . , b,) exists. Then, in the limit 

Mf,,(b,, . . . , b,) = ECibia'l'-I + . . . 
i # O  

From ( 3 7 ~ )  and (37b) we can establish equations for coefficients C,. If exponent 
X i i  i 0, then (37a) and { j i b )  yieid the iriviai reiation For Ci: 

ci = (ai)  (= ( 2 ) P C ) .  (39Q) 

For i = L, however, owing to (34), we obtain 

(0r )  c -  - 1 - (0,) 

where (0,) = ( z ) ~  and so C, diverges for ( 2 )  = 1 as in the 1D case. As q, = 2M, 
the non-analyticity of the free energy appears first in the 2Mth order of expansion 
in a.  

It is still necessary to prove that the non-analyticity of f,(a,. . . , a )  in the 2Mth 
order does not occur in the next terms of the expansion. Using (37a) and (376) we 
derive 

Mf,(b,, ..., b , ) = C C i b i a S ' - ' +  CijaA"bia7.-'+. .. 
i # O  i j # O  

except ,=j=, 

Here Cij = 0 once pi + pj = 7ij  (there are no bonds between the ith and j t h  configu- 
rations which connect two spins 'down'), otherwise 

,- , ,- , c.. :> - - ( L l i ) ( S l j )  i , j  # i (4iaj  

CiL = c - (Qi)(O,d 
- 1 - (0,) i # L .  

The symmetric coefficients Dij are given by 

i # L  

where (0;) = ( z ' ) ~ .  The construction of the expansion was based on the inequality 

X i j  5 'lj (43) 
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(the equality holds if Pi + p', = yij), which enabled us to order terms according to 
their powers. On account of the identity 

A . . + q i = A j i + q ,  'I (44) 

terms with coefficients Cij and Cji contain the same power of a .  We see that the 
next failure of the naive expansion of fa(., . . . , a )  occurs in orders higher than 2M. 
Consequently, the assumption of the non-analyticity of fa(., . . . , a )  in the 2Mth order 
is correct. 

As M increases to infinity, the free energy of the corresponding twedimensional 
system is analytical in all finite orders of a. 

5. Non-analyticity of an Ising chain with random bonds 

The naive expansion of the free energy of the random-field Ising chain can fail near a + 

0 which corresponds to infinite constant bonds J + m. We now study a counterpart 
in Ising chains with random interactions (the fraction of which is infinitely large) and 
investigate the analytical properties of its free energy. 

The random bonds of the chosen model take 0, +J',  4' with respective proba- 
bilities po, p+, p- constrained by po + p+ + p- = 1. Then we have 

~ ( 2 )  = pO6(r) + P + ~ ( z  - K )  + P - ~ ( z  + K )  (45) 

with I< = tanh J ' .  Equation (19) reads 

f,(b,K) = p + l o g ( l + a b K ) + p - l o g ( l - Q b K ) - ( p +  +p-)fa(a,Ic) 

+ p t f a ( + l K  1 + abK' I<) +P-fa(-!I<) 

with a = tanh(H*) (the uniform field H' is, for simplicity, positive). For K = 1 
(J' + 00) this equation has  a more suitable form: 

f , ( b , l ) = p + l o g ( l + a b ) + p - l o g ( l - a b )  -(p+ +p- ) fo (a , l )  

+ P+ fa (S > 1) + P- fa ( - 9  1) 

and can be solved analytically, using the ansalz 

The functions g,(a), g-,(a) = -gn(a) satisfy the recursive relations 

(46') 

Evidently, g,(a) = tanh(nH*). For coefficients a,, constrained by CO,, = 1, we 
obtain the system of linear equations 

an = P O ~ ~ , O + P + ~ ~ - I  +P-a-n- i  (49) 
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which gives 

L Samaj and P MarkoB 

In what follows we will deal with the special case p+ = p -  = p (< 1/2). Equa- 
tions (50s) and (506) then read 

(I, = Cpl"1 

where p < 1 is given by 

and 
1 J2p  = cosh(logp) 

c = (1 - P)/(1 + P )  

This solution can be obtained also from 'classical' method of Derrida: by solving 
the functional equation for the probability density P ( z )  (in a manner similar to that 
presented here) one obtains that P ( z )  consists of an infinite number of weighted 6- 
function peaks localized at integers multiplied by H'. This is due to the fact that 
recursive formula (166) starting from 0, always gives the same succession of 2s. The 
same effect is visible from our equation (46'): for Q = tanh(H*), b = tanh(y), g,(a) = 
tanh(nH*), the y are confined to values nH', n integer, and so the values of b, which 
appear in (46') are confined to  the simple countable set. 

For K < 1, this 'ideal' picture will be damaged. The probability density P ( z )  is 
expected to be of a considerably different form: the 6-function peaks will move and, 
in the limit N + M, we should expect P ( z )  of the form of some broaden peaks rather 
than of an infinite number of 6-peaks. In our picture, one can no longer consider 
f,(b, K) in the form of the infinite sum. We have not found a method of solving this 
problem exactly. Nevertheless, we have succeeded in analysing of the behaviour of 
f,(b, 1 - E )  in the limit E -+ 0. 

Before proceeding further, let us rewrite f,(b, 1) into the more suitable form: 

fa@, 1) = C c  P" lOg(1 - b2gi(Q)) . (52) 
n>0 

f,,(b, 1) converges to a finite constant for any 0 5 b 5 1. However, this is not true for 
its derivative 

Indeed, one can easily find that for b = 1 it converges only for 
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For this case, we can differentiate equation (46) with respect to K and seek 

h,(b) = f,(b, 1) - f,(b, 1 -E) (55) 

in the standard way as 

For 0 < (I* < 1, the sum ( 5 3 )  diverges for b = 1, and so f,(b, 1) becomes non- 
analytical in the neighbourhood of b = 1. It can be shown, using for instance the 
procedure presented in appendix 1 of [9] ,  that 

f , ( b , l ) = f , ( l , l ) - O [ ( l - b ) " ' ]  b -  1. (56) 

One can also estimate the exponent (I* by an another method. Taking b = 1 - E 
( E - + O ) w e h a v e f o r a <  1 (a+b)/(l+ab)Es l - [ ( l -a) / ( l+a)] t ,  (~ -b ) / ( l - ab ) -  
-1 + [(1+ a)/(l - a)]E. Inserting this into (46') and considering f,,(b, 1) = fa( -b ,  1) 
we get for the terms - C"' an equation 

Owing to (516) we arrive at (56). 

tions (46') and (46) with K = l - E. The difference 
The functional equation for h,(b) can be now derived by the substraction of equa- 

1-.) 
a+b( l -&)  

f4 (2' ') - (1 + ab(1 -E) '  

could be written as 

) + A +  
a + b(l - E )  

l + a b ( l - ~ )  
with 

a + b  a + b ( l - E )  
A+ = f4(i+ab'1) -" (1 + ab(1 - E )  

Owing to (56 ) ,  A+ is of order E"* for b -+ 1 (e.g. b = 1 - AE). In this way we obtain 
the system of equations 

a + b ( l - ~ )  
l + a b ( l - ~ )  

1 2a2b2c 
-h,(b) = -- + A+ + A -  - Zh,(a) + h, P 1 - a2b2 

a - b ( l  - E )  

1 - ab(1 - E )  (59)  

We can rewrite functional equation (59)  as a system of linear equations by setting 
b - i / N ,  N > 1/E, i = 1,. . . , N :  
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Figure 2. The form of the matrix A from equation (60). The diagonal fd line 
represents Aii = l /p,  and the vertical broken line represents A,i = 2 with j = o N .  
The heavy full curves determine the position of h.((a + b(1 - c))/(l  + ob(1 - e)))  
and i , ( (a - b(1 -:))/(l - ob(1 - e))) ,  respectively. It is clear from the stmct- of 
equations, that if hi = 0 for all i < 1'. then Li = 0 also fori' < i < i". By induction, 
one obtains hi = 0 for all i < N .  

where the structure of matrix A is depicted in figure 2 and components of vector c(1) 

are non-zero only for large values of i . Omitting the term O ( E )  in (60), one gets 
the system of linear equations, which has the unique solution hi, proportional to ca.. 
Let us suppose for the moment, that  Li = 0 for all i smaller than some i'. Then one 
easily finds, from the structure of equations (60), that hi = 0 also for all i' < i < i" 
(figure 2). The same procedure can be repeated, and, finally, one obtains d l  hi = 0, 
except, maybe i = N .  This, however, disagrees with the fact that vector e(') has 
non-zero components for large i. 

- 

On the basis of the above considerations we conclude that 

h,(b) - c a .  (61) 

f,,(Q, 1 - E )  fo(Q,  1) - 0 (&a.). (62) 

for all b, and so 

We can proceed further and analyse the higher-order terms of the expansion in E .  

In this way, we need the kth derivative fi(")(b, 1) = @ff.(b, l)/ab'. One easily finds, 
using the same considerations as explained above, that the condition 

pexp(2kH') < 1 (63) 

is necessary to assure the convergence of fi')(b, 1)  for b = 1. Thus, if 

k < O'(Q,P) < k + l  (64) 

then the expansion of f,(b, 1) near b = 1 becomes non-analytical in the (k+ 1)th order 
in (1 - b). We therefore conclude, on the base of the same argument8 as above, that 
the inequality (64) determines parameters ~ , p  for which fa(., 1 - E )  is analytical up 
to the kth order in E ,  and is singular in the (k + 1)th order as P*.  
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Figure 3. The regiom in the (a,p)-plane in which fa(.) is nomandyticd in the first 
(I) ,  second (11), . . . order of expansion in c. 

6. Concluding remarks 

We would like to emphasize that the non-analyticity of the free energy in the regime 
with ‘a fraction of almost infinite random interactions’ originates from the singular 
behaviour of function f,(b,K = 1) near b = 1. We therefore conclude that our 
approach is so far the onlyone able to explain this interesting phenomena. The singular 
behaviour of fa at a given point on plane (tanh H’, p )  (figure 3) is determined by the 
positive parameter a* defined in (54). Its  integer part [a’] implies the last order 
of E at which the Taylor expansion does not break down. It is clear that for each 
point on the plane (tanhH’, p )  the Taylor expansion breaks down at  a certain order. 
Since for an arbitrary small field H’ and an arbitrary small concentration p of infinite 
plus/minus interactions a spin configuration cannot satisfy all interactions and the 
field simultaneously, this fact confirms the effect of the frustration on the singular 
properties of the free energy. 
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